Low Regularity Local Well-Posedness of the Derivative Nonlinear Schrödinger Equation with Periodic Initial Data
نویسندگان
چکیده
The Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition is considered. Local well-posedness for data u0 in the space b H r (T), defined by the norms ‖u0‖ b Hs r (T) = ‖〈ξ〉 s b u0‖lr′ ξ , is shown in the parameter range s ≥ 1 2 , 2 > r > 4 3 . The proof is based on an adaptation of the gauge transform to the periodic setting and an appropriate variant of the Fourier restriction norm method.
منابع مشابه
Almost Surely Local Well-posedness of the Cubic Nonlinear Schrödinger Equation below L²(t)
We consider the local well-posedness of the periodic cubic nonlinear Schrödinger equation with initial data below L(T). In particular, we prove that it is locally well-posed almost surely for the initial data in the support of the Gaussian measures on H(T) for each s > − 1 8 .
متن کاملOn the periodic Schrödinger-Debye equation
We study local and global well-posedness of the initial value problem for the Schrödinger-Debye equation in the periodic case. More precisely, we prove local well-posedness for the periodic Schrödinger-Debye equation with subcritical nonlinearity in arbitrary dimensions. Moreover, we derive a new a priori estimate for the H norm of solutions of the periodic Schrödinger-Debye equation. A novel p...
متن کاملGlobal Well-posedness and Scattering for Derivative Schrödinger Equation
In this paper we mainly study the Cauchy problem for the derivative nonlinear Schrödinger equation in d-dimension (d ≥ 2). We obtain some global well-posedness results with small initial data. The crucial ingredients are L e , L ∞,2 e type estimates, and inhomogeneous local smoothing estimate (L e estimate). As a by-product, the scattering results with small initial data are also obtained.
متن کاملInvariant Weighted Wiener Measures and Almost Sure Global Well-posedness for the Periodic Derivative Nls
In this paper we construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier-Lebesgue space FL(T) with s ≥ 1 2 , 2 < r < 4, (s − 1)r < −1 and scaling like H 1 2 (T), for small ǫ > 0. We also show the invari...
متن کاملm at h . A P ] 2 3 Fe b 20 07 GLOBAL WELL - POSEDNESS AND POLYNOMIAL BOUNDS FOR THE DEFOCUSING L 2 - CRITICAL NONLINEAR SCHRÖDINGER EQUATION IN R
We prove global well-posedness for low regularity data for the one dimensional quintic defocusing nonlinear Schrödinger equation. Precisely we show that a unique and global solution exists for initial data in the Sobolev space H(R) for any s > 5 14 . This improves the result in [22], where global well-posedness was established for any s > 4 9 . We use the I-method to take advantage of the conse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 39 شماره
صفحات -
تاریخ انتشار 2008